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Abstract. On the basis of most of the earlier hyperfine-structure (hfs) experimental results, the hfs of
the atomic zirconium has been reanalyzed by the simultaneous parameterization of the one- and two-
body interactions for the model space (4d + 5s)4. The values of the one- and two-body hfs parameters
have been determined and the nuclear quadrupole moment, free of Sternheimer corrections up to second
order, Q(91Zr) = −0.23(2)b has been evaluated. Moreover, the values of the magnetic-dipole A and the
electric-quadrupole B constants for all known levels of this model space have been predicted.

PACS. 31.30.Gs Hyperfine interactions and isotope effects

1 Introduction

The analysis of the 4d- and 5d-shell spectra has been per-
formed only in a few cases until now, due to the scarcity of
experimental data. Shadmi’s systematic treatment of the
(4d + 5s)n configurations in the neutral palladium-group
atoms [1] was apparently never published, and no sys-
tematic calculation has been made for the (4d+ 5s)n−15p
odd parity configurations in these atoms. Shadmi’s cal-
culations included Zr (4d + 5s)4, and the levels of this
complex were also studied by Büttgenbach et al. [2]; both
investigations indicated the need for revisions of the Zr
analysis in [3]; in the past Wyart [4,5] and recently Mar-
tin and Sugar [6] after examining available data for the
odd parity energy level structures in Zr, Hf and Rf – these
elements are located in the same row of the periodic table
– concluded also that more complete and reliable energy
level analysis are needed for a number of 4d- and 5d-shell
spectra.

91Zr is the only stable Zr isotope with the non-zero
nuclear spin. It has a natural abundance of 11.3% and
the nuclear spin I = 5/2. Half century ago the hfs of
91Zr has been measured using the Fabry-Perot technique
[7,8] and later Büttgenbach et al. [2] performed pre-
cise atomic-beam-magnetic-resonance (ABMR) measure-
ments; but we can consider that like in the case of hafnium
[9] only few hfs measurements have been achieved so far
comparatively to the other elements. This is because Hf
and Zr are refractory elements whose atomic beams are
difficult to be produced stably. In this work we try to esti-
mate the virtual excitation effects on the atomic structure
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of 4d-elements and we use them to predict non-measured
hfs splittings of the model space levels.

2 Remarks on fine and hyperfine structure
parameterizations

The method applied here for fine structure (fs) and hfs
analysis was successfully used for the model space [nd +
(n+ 1)s]N+2 in the 3d-elements [10–16] and hafnium and
tantalum atoms [9,17].

The procedure of fs analysis includes besides electro-
static and spin dependent interactions within model space
(4d + 5s)4, which are represented by the Slater integrals
F k, Gk, Rk and the spin-orbit integrals ζ4d also the inter-
actions with distant configurations. The interaction effects
with distant configurations affecting the term structure
have been taken into account by the three-body param-
eters T (d2s), T2(22), T3(42) and two-body parameters α
and β representing the one- and two-electron excitations,
respectively. The effects of the one-electron excitation on
the spin-orbit splitting of the term (electrostatically cor-
related spin-orbit interaction (EL-SO)) were considered
in the way reported in [11,12,17] and we express their
strength by the parameters Pi defined in [11].

The fs least square fitting procedure have been carried
out to 40 energy levels attributed to the model space. The
details on this method can be found in [10,13,16]. With
65 parameters 11 of which were treated as free, a good fit
has been achieved. In Table 1 are given the energy levels,
calculated eigenvalues and percentages of first and second
components of wavefunctions. In this table the calculated
Landé gJ -factors, deduced from eigenvector compositions
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Table 1. Comparison of the observed and calculated energy levels and gJ -factors.

Obs. energy Calc. Largest eigenvector Next-largest

level eigenvalue ∆E component (%) component (%) Calc. gJ Obs. gJ ∆gJ

4196.850 4197.387 −0.537 74.33 3P 23.26 2P

15190.302 64.91 4P ; 3P 17.09 2P ; 3P

17321.520 17235.256 86.264 56.97 2P ; 3P 25.46 4P ; 3P

19660.002 93.82 1S 3.41 1S

21726.279 21736.264 69.984 99.48 5D 0.27 3P

29651.816 48.83 3P 38.92 3P

4376.280 4380.257 −3.978 74.08 3P 23.64 2P ; 3P 1.50103 1.50072 −0.00031

4870.530 4869.180 1.350 99.53 4F ; 5F 0.28 2D; 3D 0.00055

10885.360 10878.824 6.536 99.54 4P ; 5P 0.30 3P 2.49862 2.50000 0.00138

14123.010 14119.606 3.403 68.43 2D; 3D 23.29 2D; 3D 0.54858 0.61000 0.06142

15448.580 68.61 4P ; 3P 10.67 2P ; 3P 1.44866

17059.820 17065.600 −5.779 49.60 2P ; 3P 26.02 2P ; 1P 1.37299

17885.166 69.85 2P ; 1P 13.09 2P ; 3P 1.13292

21801.211 21807.820 −6.609 99.61 5D 0.19 3P 1.50089

0.000 19.508 −19.508 96.05 3F 1.91 2F ; 3F 0.67002 0.66981 −0.00021

4186.110 4156.652 29.458 49.49 1D 31.75 3P 1.21028 1.23146 0.02118

5023.410 5027.475 −4.064 98.38 4F ; 5F 0.62 1D 1.00333 1.00081 −0.00252

5101.680 5081.541 20.140 41.56 3P 36.29 1D 1.28410 1.26472 −0.01936

11016.650 11013.411 3.239 98.97 4P ; 5P 0.59 3P 1.83099 1.82000 −0.01099

11640.720 11629.690 11.029 96.41 4F ; 3F 1.96 3F 0.67110 0.75000 0.07890

14348.780 14360.316 −11.536 71.10 2D; 3D 22.58 2D; 3D 1.17585 1.17000 −0.00585

15932.100 15959.384 −27.284 78.90 4P ; 3P 9.01 3P 1.49420 1.46000 −0.03420

17142.721 17213.531 −70.811 61.49 2P ; 3P 19.12 3P 1.46369

18717.287 63.39 2D; 1D 11.42 2D; 1D 1.03230

20251.521 92.08 2F ; 3F 3.22 3F 0.66900

21943.740 21945.029 −1.289 99.74 5D 0.08 3P 1.50055

26450.754 74.15 2D; 3D 20.13 2D; 3D 1.16608

1240.840 1226.014 14.826 96.71 3F 2.22 2F ; 3F 1.25010 1.24987 −0.00023

5540.540 5562.064 −21.524 99.78 4F ; 5F 0.16 2G; 3G 1.35027 1.35012 −0.00015

8057.300 8088.182 −30.882 81.88 1G 16.48 2G; 1G 1.00068 1.00052 −0.00016

12342.370 12312.831 29.539 50.91 4F ; 3F 46.12 2G; 3G 1.15316 1.15000 −0.00316

12760.660 12748.477 12.184 50.53 2G; 3G 46.07 4F ; 3F 1.14223 1.15000 0.00777

14791.280 14771.212 20.068 96.06 2H; 3H 1.69 2G; 3G 0.80670 0.77000 −0.03670

17752.730 17759.313 −6.582 79.61 2G; 1G 15.85 1G 0.99991 1.00000 0.00010

20145.145 92.20 2F ; 3F 3.16 3F 1.24956

22398.000 22385.242 12.758 99.51 5D 0.26 2F ; 3F 1.49992

5888.930 5919.900 −30.970 99.56 4F ; 5F 0.44 2G; 3G 1.40004 1.39991 −0.00013

12772.780 12760.721 12.060 95.45 2G; 3G 2.61 2H; 3H 1.19632 1.20000 0.00368

14988.510 14968.516 19.994 96.42 2H; 3H 2.62 2G; 3G 1.03788 1.03000 −0.00788

18738.939 18817.252 −78.313 99.60 2H; 1H 0.25 2G; 3G 1.00057 1.02000 0.01943

15119.660 15098.171 21.489 99.17 2H; 3H 0.83 3H 1.16705 1.15000 −0.01705

mean square error σ = 31 cm −1

number of independent parameters = 11

number of levels fitted = 40

degrees of freedom = 29
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Table 2. Fs parameters values (in cm−1) of the model space
(4d+ 5s)4 of zirconium atom.

Configuration 4d25s2 4d35s1 4d4

Eav 5473(14) 15211 (8) 31780 (16)

F 2(4d, 4d) 30281(137) 25567 (64) 21141a

F 4(4d, 4d) 17756(265) 15171(56) 14354a

G2(4d, 5s) – 8551(25) –

T2(22) – −62 −62

T3(42) – −47 −47

T (d2s) −311 −311 –

Values of parameters common to all configurations:

ζ(4d, 4d) = 387(17); P1 = 125(32);

P2 = 24(39); P3 = 16.08 b;

α = 32(2); β = −138(39).

Values of configuration interaction parameters:

4d25s2−4d35s1, R2(4d4d, 4d5s) = −12226(50);

4d35s1−4d4, R2(5s5s, 4d4d) = 8551c;

4d35s1−4d4, R2(4d5s, 4d4d) = −10092(63).
a Taken in a ratio to parameters of 4d35s1 configuration.
b Taken in a ratio to P2.
c Taken as an equal to G2(4d, 5s) .

are compared to experimental ones. Table 2 contains the
values of fs radial parameters.

We would like to remind that the attribute of the
method, we use for the description of the fs spin-dependent
interactions and hfs interactions, is the assumption that
the orbital 4d and also the open n′l′- and the inner n′′l′′-
shell orbitals are common to all states within the model
space.

Concerning the hfs analysis we follow the many-body
parameterization method [10–12] which allows to take ad-
vantage of similarities between configuration interaction
effects observed independently in spin-orbit and hyperfine
splittings.

The assumption mentioned above allows to replace the
familiar one-configuration parameters aκknl (l

N+Ms2−M ) by
the model space parameter aκknl [10]:

aκknl (l
N+Ms2−M ) = aκknl + [2/(2l+ 1)][1− (N +M)]a1

− [2/(2l+ 1)]1/2(2−M)a4

+ [2/(2l+ 1)]a5δ(M, 0) (1)

for κk = 01, 12. In the case of κk = 10 we have:

a10
nl(l

Ns2) = a10
nl

a10
nl(l

N+1s) = a10
nl − [2/(2l+ 1)]a9

a10
nl(l

N+2) = a10
nl + [2/(2l+ 1)](a10 − a9). (2)

These relations can also help to compare our results with
those given in [2]. Another consequence of the above as-
sumption is the formula:

ai

aκk4d

=
bi

bκk4d

=
Pi

ζ(4d, 4d)
, i = 1, 2, 3 (3)

which gives the possibility to compare the effects of the
virtual excitations on the fine- and hyperfine structure
or to introduce in hfs-fit fixed relations between radial
parameters (in case of the scarcity of experimental data).

It should be mentioned that in case of the 4d-elements
there exists the excitation from closed and 3d-shell into the
open 4d-shell. However, these excitations deliver no new
angular dependency and cause only the screening effects
for the excitations open shell→ empty shell, which already
have been taken into account.

3 Hfs results and discussion

The essential formulae for prediction of the A and B
constant values of the levels belonging to the considered
(4d+ 5s)4 configurations read as follows:

A(ψ) =
∑
φ,φ′

c(ψ, φ)c(ψ, φ′)

×

∑
κk,nl

ακknl (φ, φ
′)aκknl +

∑
i

αi(φ, φ
′)ai


︸ ︷︷ ︸

A((φ,φ))

=
∑
κk,nl

ακknl (ψ)aκknl +
∑
i

αi(ψ)ai (4)

and

B(ψ) =
∑
φ,φ′

c(ψ, φ)c(ψ, φ′)

×

∑
κk,nl

βκknl (φ, φ′)bκknl +
∑
i

βi(φ, φ
′)bi


︸ ︷︷ ︸

B((φ,φ))

=
∑
κk,nl

βκknl (ψ)bκknl +
∑
i

βi(ψ)bi (5)

where aκknl and bκknl are hfs one-body radial parame-
ters, whereas ακknl (φ, φ

′) and βκknl (φ, φ′) stand for the
angular coefficients originating in the first-order hfs
operator. The two-body hfs radial parameters and
their angular coefficients are represented by ai, bi and
αi(φ, φ

′), βi(φ, φ
′) respectively [10]. In calculations of the

ακknl (ψ), βκknl (ψ), αi(ψ), βi(ψ) coefficients the c(ψ, φ) am-
plitudes of intermediate coupling eigenvectors, which were
obtained from semi-empirical analysis of fs, are used
(Tabs. 3 and 4).

The radial parameters aκknl , b
κk
nl , ai and bi have been

evaluated by fitting them to experimentally determined
hfs constants A and B [2] using the theoretical expressions
(4, 5). However, the number of A and B experimental val-
ues of 91ZrI is much smaller than the number of one and
two body parameters predicted by theory. According to
our knowledge, the constants A and B were measured for
only 7 levels of ground configuration [2]. For this reason
additional assumptions, which are taken from relativistic
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Table 3. The coefficients of the hfs magnetic dipol interaction
parameters of the model space for each fine structure state
under study.

α01(4d) α12(4d) α10(4d) α10(5s)

α12
IC α1 α2 α3

α4 α5 α6 α7

α8 α9 α10 α11

b 3F2 1.32922 0.17172 −0.32603 −0.00319

−0.03026 −0.61963 0.32878 0.03882

−2.64191 0.58999 −0.03944 −0.02824

0.01061 −0.00019 0.00019 −0.00779

c 5F2 0.99667 −0.05932 −0.00359 0.00693

−0.01563 −0.74691 0.39816 0.06287

−0.84502 0.36866 0.02390 −0.00630

−0.00098 0.00528 −0.00528 −0.00017

b 3F3 0.91666 0.03385 0.08252 0.00082

−0.01044 −0.39377 0.21124 0.02828

−1.66999 0.37311 −0.01115 −0.02202

0.00400 0.00003 −0.00003 0.00201

c 5F3 0.75019 −0.04008 0.18054 0.06927

0.00201 −0.56808 0.29473 0.05580

−0.63516 0.28274 0.01395 0.00018

0.00008 0.00545 −0.00545 −0.00011

b 3F4 0.75048 −0.02413 0.24676 0.00276

0.00345 −0.30297 0.15776 0.02187

−1.27155 0.28373 0.00801 −0.02345

0.00015 0.00023 −0.00023 0.00630

c 5F4 0.65054 −0.00648 0.25844 0.09102

0.00251 −0.51524 0.24555 0.06275

−0.57610 0.25681 0.00280 0.00030

0.00001 0.00293 −0.00293 −0.00005

c 5F5 0.60089 −0.01596 0.29911 0.10000

−0.00086 −0.46795 0.21511 0.07703

−0.52316 0.22494 0.00543 −0.00003

0.00006 0.00017 −0.00017 −0.00001

b: 4d25s2 configuration; c: 4d35s configuration.

Hartree-Fock calculations [18] and from fs analysis (see
Eq. (3)) had to be included in our hfs-fitting procedure.
The value of hfs parameters are presented in Table 5. Some
of the hfs two-body parameters, which are expected to be
small, have been fixed to zero and they are not listed in
Table 5. In Table 6 the results of hfs calculations together
with predicted A and B hfs constants are presented. Dif-
ferences between the experimental and calculated A and
B values are small and they can origin from low degree of
freedom in the hfs least square fitting procedure.

Usually the hfs parameters are discussed for each con-
figuration separately. Using the equations (1, 2) the cor-

Table 4. The coefficients of the hfs electric quadrupole inter-
action parameters of the model space for each fine structure
state under study.

β02 β13 β11 β02
IC

β1 β2 β3 β4

β5 β6 β7 β8

b 3F2 0.18583 −0.05005 −0.06687 −0.06038

−0.07510 0.04340 0.00481 −0.33072

0.07287 0.05670 −0.01441 0.00809

c 5F2 −0.05630 −0.03500 0.05204 0.00522

0.04374 0.01584 −0.02457 0.05326

−0.02251 −0.02100 −0.00038 0.00087

b 3F3 0.21183 −0.04212 0.08098 −0.07776

−0.08587 0.04818 0.00528 −0.37637

0.08296 0.06920 −0.01618 0.00848

c 5F3 −0.09116 −0.04599 0.10757 −0.00002

0.07293 0.02856 −0.04392 0.08153

−0.03640 −0.03023 0.00004 −0.00004

b 3F4 0.28357 0.03964 0.19912 −0.10716

−0.11495 0.06393 0.00685 −0.50387

0.11085 0.09247 −0.02222 0.01206

c 5F4 −0.17065 −0.03068 0.15934 −0.00010

0.13653 0.05376 −0.08309 0.15261

−0.06818 −0.05729 0.00007 −0.00008

c 5F5 0.28321 0.03341 0.20370 0.00054

−0.22657 0.08933 −0.13802 −0.25332

0.11034 0.09393 0.00001 −0.00004

b: 4d25s2 configuration; c: 4d35s configuration

responding parameters for each configuration can be de-
duced (Tab. 7) from the model space parameters (Tab. 5).

The configuration radial integrals are given in Ta-
ble 8, together with the results of Büttgenbach et al. [2]
and also Hartree-Fock (HF) and Optimized-Hartree-Fock-
Slater (OHFS) calculations made by Lindgren and Rosen
[18] and by Olsson and Rosen [19] for comparison.

In principle the experimental value 〈r−3〉10
4d,exp reflects

relativistic effects and core polarization contribution due
to the Fermi contact term [20]:

〈r−3〉10
4d,exp = 〈r−3〉10

4d,rel + 〈r−3〉10
4d,contact. (6)

The relativistic parts 〈r−3〉10
4d,rel evaluated from ab initio

theoretical calculations [18,19] contribute only a few per-
cent to the experimental values [2,21,31]. The main con-
tribution to the experimental contact parameter for the
d-electrons is therefore configuration interaction [22].



S. Bouazza et al.: HFS of the lowest even configuration levels of Zr 43

Table 5. The hfs radial parameters for the model space (4d + 5s)4 (in MHz).The uncertainties given in parentheses are the
standard deviations.

Parameter value (MHz) parameter value (MHz)

a01
4d −124.28 (0.69) b02

4d −131.94 (1.14)

a12
4d = 1.0789 a01

5d −134.09a b13
4d −4.51 (1.40)

a10
4d 3.47 (1.06) b11

4d = −0.426 b13
4d 1.92

a12
4s −1716.1(5.5)

a12
IC 0 b02

IC 0

a1 −37.02 (1.51) b1 −42.49 (2.66)

a2 = 0.195 a1 −7.22b b2 = 0.195 β1 −8.29b

a3 = 0.130 a1 −4.81b b3 = 0.130 β1 −5.52b

a9 = 0.20725 a10
5s −356c

a11 = −0.54985 a10
5s 944c

a Ratio of the parameters taken from the Hartree-Fock calculations [12].
b Ratio of the parameters taken from fs calculations (see text).
c Ratio average of the parameters taken from hfs fit for Ta [17] and Ti [32].

From the definition of hfs radial integral [10]

〈r−3〉10
4d,contact =

16π

3

∑
n′′,n′′′

E(n′′s4d, 4dn′′′s)ψn′′,s(0)ψn′′′s(0)

(2l + 1)∆E(n′′s, n′′′s)
(7)

one can see that core polarization effect observed for the
4d35s configuration differs from that for the 4d25s2 con-
figuration by contributions of electron excitations of the
type n′′s → 5s and 5s → n′′′s. The closed shell 5s2 does
strongly reduce the effect of core polarization. Due to
the scarcity of experimental data and then to the lim-
ited number of possible free parameters we took here
〈r−3〉10

4d(4d
4) = 〈r−3〉10

4d(4d
35s). In reality 〈r−3〉10

4d(4d
4) can

be slightly bigger than 〈r−3〉10
4d(4d

35s) (around 11% in the
case of Ti [23,24] for example). Let us point out that the
core polarization behaviour is different as far as p-electrons
are concerned [25–27]. This problem will be discussed in
details in another paper about odd configurations.

4 Determination of the nuclear quadrupole
moment

In order to determine the nuclear quadrupole moment
Q the radial parameters a01

nl , a
12
nl , and b02

nl are commonly
used. The values of these parameters were still disturbed
by the effect of electrostatic interactions with far configu-
rations called “Sternheimer effects”. The Q value obtained
in that way must be corrected by calculated Sternheimer
shielding or antishielding factors [28].

The new parameterization method [10] used in this
work allows the evaluation of SL- and N -dependent con-
tributions to the observed hfs splitting, which arise from
the mixing of far configurations via coulomb interac-
tion. Thus, if Q values are evaluated from the following

equation [10]:

Q =
2µIgI
e2

b02
nl(1 +∆

(01)1
ll′ )

a01
nl(1 +∆

(02)2
ll′ )

F 01

R02
(8)

where F 01 and R02 are relativistic correction factors [18]
and ∆κk

ll′ are the contributions of one-body excitations
of closed shells to empty shells [29]. The contributions

∆
(κk)1,2
ll′ of one-body excitations of full shells to empty

shells are not known, because they cannot be determined
experimentally. Neglecting these contributions we can de-
rive Q = −0, 22(2)b.

The above mentioned SL- and N -dependent contribu-
tions to the A and B constants have been separated by
the use of an independent set of two-body hfs parameters
ai and bi. This permits the determination of the nuclear
quadrupole moment Qi free from Sternheimer corrections
from this independent set of two-body hfs parameters [10].

Q1 =
2µIgI
e2

b1

a1
· (9)

Since the magnetic dipole moment of 91Zr has been mea-
sured by NMR method; (µI = −1.29802(2)µN [30]) it is
possible to derive Q1 = −0.24(3)b.

The difference between the both Q-values quoted
above is within experimental uncertainties and indicates
the effects of inner shell → empty shell excitation can
be neglected. Hence we prefer the average value Q =
−0, 23(2)b as the final result, which is quasi free of Stern-
heimer corrections.

5 Conclusion

For the first time the nuclear quadrupole moment of the
zirconium, quasi free of Sternheimer corrections up to sec-
ond order has been determined using successfully the hfs
parameterization method proposed in [10], as regards 4d-
electrons this time.
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Table 6. Predicted A andB hfs constants of 91Zr (in MHz). The rows printed in bold are related to the levels with experimentally
measured hfs splitting [2]. Acalc and Bcalc are given with uncertainties originated from pure statistical error.

Energy Designation Aexp Acalc ∆A Bexp Bcalc ∆B

J = 1

4376.280 f I 3P −43.157 −17.98

4870.530 f II 4F ; 5F 246.414 6.66

10855.360 f II 4P ; 5P −577.998 −4.08

14123.010 f II 2D; 3D 306.252 13.90

15449∗ II 4P ; 3P 146.293 10.97

17059.820 f II 2P ; 3P −798.318 −1.42

17885∗ 2P ; 1P 353.701 7.00

21801.211 f III 5D 55.194 −15.91

J = 2

0.000 f , I 3F −170.7696 −170.7857 0.0161 −21.500 −21.616 0.116

4186.110 f , I 1D −117.121 30.25

5023.410 f , I 4F; 5F −105.7264 −105.3757 −0.3507 5.587 5.754 −0.167

5101.6 f II 3P −98.303 32.85

11016.650 f II 4P ; 5P −400.186 39.53

11640.720 f II 4F ; 3F −298.236 18.51

14348.780 f II 2D; 3D −279.578 21.42

15932.100 f II 4P ; 3P 163.713 −32.43

17142.721 f II 2P ; 3P −335.526 8.23

18717∗ II 2D; 1D −101.417 22.09

20251∗ II 2F ; 3F 204.521 −21.49

21943.740 f III 5D 47.004 −9.90

J = 3

570.410 f I 3F −104.9441 −104.7764 −0.1677 −24.187 −24.383 0.196

5249.070 f II 4F; 5F −189.1413 −189.5090 0.3677 9.606 9.216 0.390

11258.880 f II 4P ; 5P −309.600 −39.33

11956.330 f II 4F ; 3F −13.224 13.26

12503.440 f II 2G; 3G 96.056 −11.70

14697.030 f II 2D; 3D −372.629 27.88

20198∗ II 2F ; 3F −137.856 −23.10

21767∗ II 2F ; 1F −107.965 −30.14

22145.311 f III 5D 35.622 11.36

J = 4

1240.840 f , I 3F −77.8878 −78.0836 −0.8042 −33.476 −32.889 −0.586

5540.540 f I 4F; 5F −217.5720 −219.3718 1.7998 17.320 16.930 0.390

8057.300 f II 1G −107.403 −110.57

12342.370 f II 2G; 3G −32.393 1.83

12760.660 f II 4F ; 3F −40.773 0.76

14791.280 f II 2H; 3H 63.752 −67.97

17752.730 f II 2G; 1G −72.942 −38.28

20145∗ II 2F ; 3F −305.033 −24.90

22398.000 f III 5D 22.491 46.27

J = 5

5888.930 f II 4F; 5F −229.6590 −227.7779 −1.8811 27.684∗∗ −27.09

12772.780 f II 2G; 3G −266.058 26.32

14988.510 f II 2H; 3H −132.845 12.68

18738.939 f II 2H; 1H −81.934 14.26

J = 6

15119.660 f II 2H; 3H −237.882 13.88
∗ calculated energy ∗∗ not introduced in the fit calculation (see Sect. 5)

f : level taken to fs least-square fit

I: 4d25s2 II: 4d35s III: 4d4
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Table 7. Hfs radial parameters in one-configuration approximation deduced from (1) and (2). All values are given in MHz.

a01
4d a12

4d a10
4d a10

4d b02
4d b13

4d a11
4d

4d25s2 −102.8 −251.7 −9.1 −119.3 −14.8 3.3 [8]

−109.48 −119.28 3.5 −114.8 −4.4 1.9 [this work]

4d35s −95.5 −52.4 62.5 -1889 −87.9 −3.2 13.8 [8]

−94.68 −104.48 145.9∗ -1716 −96.6 −4.4 1.9 [this work]

4d4 −79.88 −89.68 145.9 −78.4 −4.4 1.9 [this work]

Table 8. Theoretical and experimental radial integral values (in a−3
0 ).

Magnetic dipole interaction Electric quadrupole interaction

〈r−3〉01
4d 〈r−3〉12

4d 〈r−3〉10
4d 〈r−3〉5s 〈r−3〉02

4d 〈r−3〉13
4d 〈r−3〉11

4d

4d25s2

HF 2.299 2.444 −0.0654∗ 2.310 0.300 −0.112

OHFS 2.475 2.636 −0.0727∗ 2.487 0.333 −0.125

Exp. [8] 2.070 5.1 0.2

This work 2.210 2.408 −0.071 2.020 0.077 −0.033

4d35s

HF 1.949 2.082 −0.0606∗ 1.958 0.267 −0.103

OHFS 2.090 2.257 −0.0771∗ 58.7 2.098 0.320 −0.129

Exp. [8] 1.92 1.1 −1.3 38.0

This work 1.911 2.109 −2.945 34.64 1.699 0.077 −0.033

4d4

HF 1.634 1.763 −0.060∗ 1.640 0.246 −0.100

OHFS 1.785 1.96 −0.081∗ 1.790 0.312 −0.133

Exp. [8] 1.74

This work 1.612 1.810 −2.945 1.379 0.077 −0.033
∗ Relativistic party only

As one can see in Table 8 more reliable data and better
agreement with ab initio calculations has been obtained in
this work. Furthermore, with only 7 hfs experimental data
of two configurations, we have been able to predict the hfs
splitting of the remaining levels of the system, resorting
to a model space parameterization.

Büttgenbach et al. gave B(4d25s 5F5) positive [8].
Later in his book [31] he repeated the same data. Con-
sidering then that is not a misprint we suggest to our col-
leagues to perform some experimental measurements to
check the sign of this value because in Table 4 the coeffi-
cient of b02 (0.28321) is positive and b02 = −131.94 MHz
(Tab. 5) then the B constant of this level should be neg-
ative.

We hope that this work can be a stimulus for further
experimental and theoretical hfs investigations in the zir-
conium atomic spectrum: this element is light and then the
expected Doppler width of lines is surely consequent; so
the predicted A and B constants given in Table 6 can help
to simulate the shapes of lines under study with laser spec-
troscopy and to recognize the saturated hyperfine compo-

nents even if the classical relative ratios of these compo-
nents change totally.

The calculations were performed on the CRAY J916 computer
at Poznan Supercomputing and Networking Center under the
project KBN 0T11F01008p01. This work was partially sup-
ported by Politechnika Poznanska under the project BS 63-
003.
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